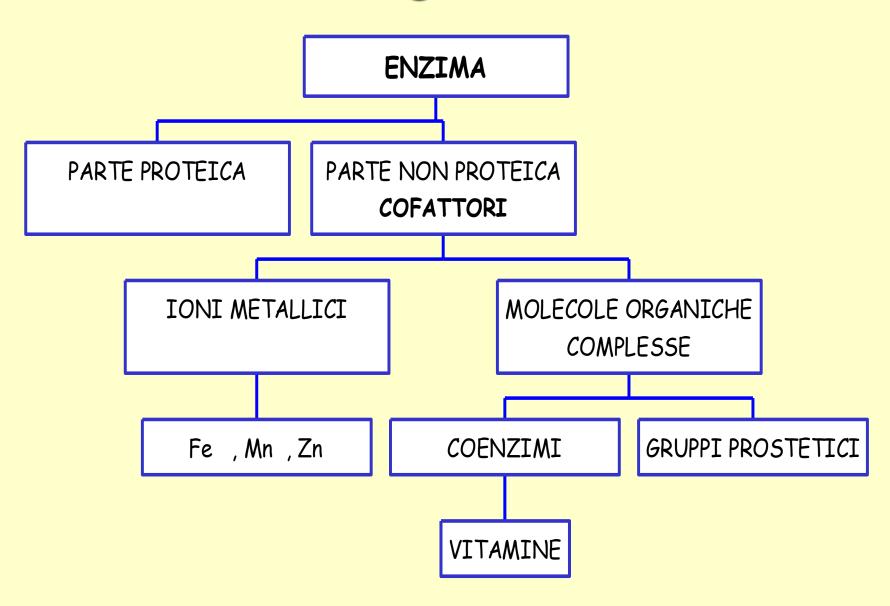
LE VITAMINE: cosa sono e come agiscono

sono sostanze organiche essenziali: nell'accrescimento

nel mantenere lo stato di salute e le funzioni vitali di un organismo

agiscono in dosi minime incapaci di essere sintetizzate, vanno introdotte con l'alimentazione presenti in tracce negli alimenti (frutta e verdura) prive di valore energetico ognuna svolge un ruolo ben determinato


REGOLAZIONE

- BIOREGOLATORI del metabolismo COME COENZIMI

PROTEZIONE

- ANTIOSSIDANTI per eccellenza
- DIFESE IMMUNITARIE

Bioregolatori

DIETA EQUILIBRATA E COMPLETA

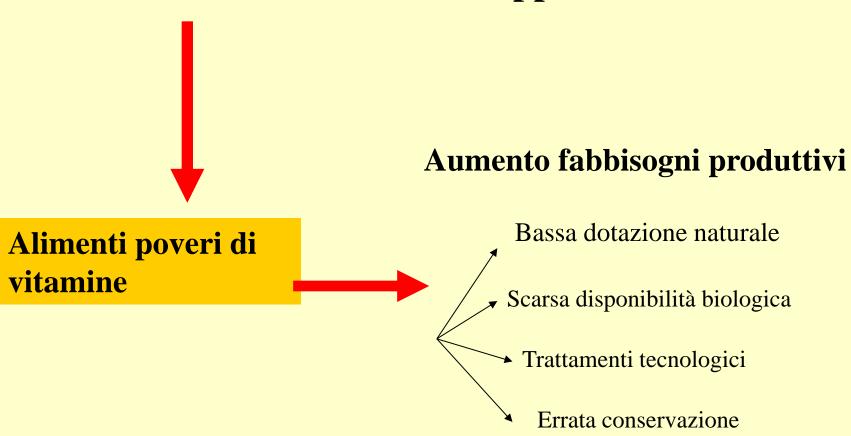
- ✓ avitaminosi mancanza totale di una o più vitamine
- ipovitaminosi mancanza parziale di una o più
 - l'alterato assorbimento
 - l'alimentazione inadeguata
 - l'aumentato fabbisogno

condizioni fisiologiche particolari, l'inquinamento ambientale, fumo, l'alcool, i contraccettivi orali, il caffè, gli antibiotici, altri farmaci

preparazione, confezione e conservazione degli alimenti

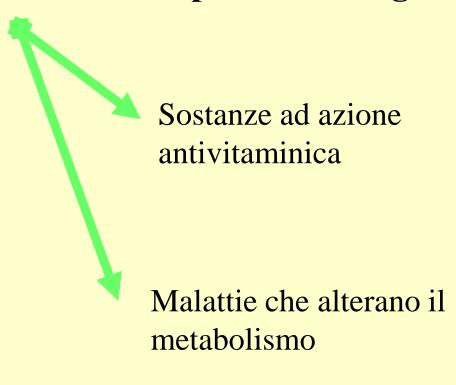
Es., nel pane bianco non c'è più traccia di vitamine contenute nella crusca; nella margarina, non si hanno le vitamine A e D; nei cibi conservati mediante eccessivo riscaldamento o cottura, che distruggono la vitamina C e alcune vitamine del gruppo B

✓ ipervitaminosi eccesso dovuto a iperdosaggi


FABBISOGNO DI VITAMINE

Il fabbisogno delle diverse vitamine varia in rapporto a:

- > Età
- > Sesso
- > Stile di vita
- > Attività
- **Condizioni fisiologiche**
- > Abitudini alimentari


CARENZE PRIMARIE

Dovute ad un insufficiente apporto alimentare

CARENZE SECONDARIE

• Ridotta utilizzazione da parte dell'organismo:

Vitamine sintetiche vs naturali

> Hanno struttura identica, ma effetti diversi

Negli alimenti le vitamine interagiscono con altre componenti creando un sinergismo che consente di ottenere risultati che la vitamina sintetica da sola non può raggiungere

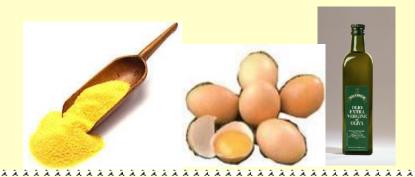
Classificazione in base alla solubilita'

LIPOSOLUBILI

- Non sono eliminate facilmente
- Sono immagazzinate nel corpo
- Riserva
- Non necessario introdurle quotidianamente con la dieta
- Ipervitaminosi
- E' sicuro assumere una dose giornaliera 10 volte la dose consigliata

IDROSOLUBILI

- Diffondono liberamente nei liquidi intra ed extracellulari
- Non immagazzinate nel corpo
- Assunte con un'adeguata alimentazione in intervalli di tempo brevi
- Non esercitano effetti tossici
- E' sicuro assumere una dose giornaliera 50 volte la dose consigliata
- Labili


VITAMINE IDROSOLUBILI

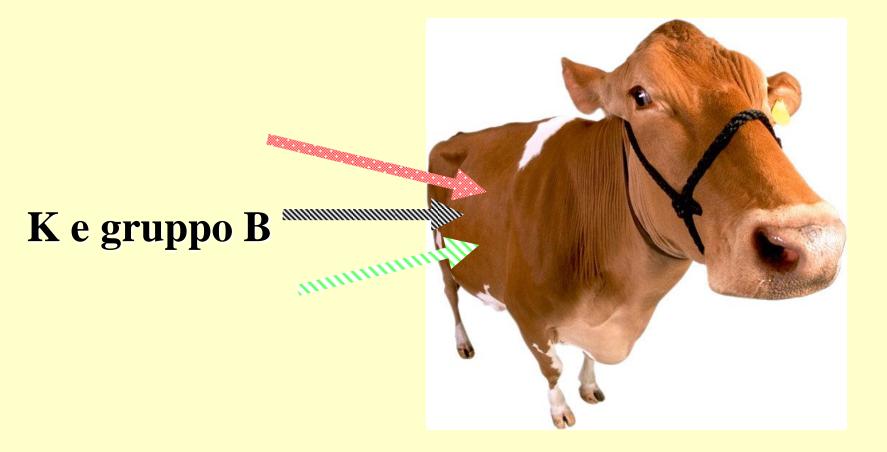
Vitamina B1	Tiamina		
Vitamina B2	Riboflavina		
Vitamina PP o B3	Niacina, acido nicotinico, nicotinammide		
Vitamina B5	Acido pantotenico		
Vitamina B6	Piridossina, piridossale,		
	piridossammina		
Vitamina B8 o H	Biotina		
Vitamina B9	Acido folico		
Vitamina B12	Cobalamine		
Vitamina C	Acido ascorbico		

VITAMINE LIPOSOLUBILI

Vitamina A	Retinolo, β-carotene (provitamina A)
Vitamina D	Colecalciferolo (D3) Ergocalciferolo (D4)
Vitamina E	Tocoferoli
Vitamina K	Fillochinone (K1) Menachinone (K2)

A, D3, B12, B6

E, B8, gruppo B



Beta-carotene, E, D2, K, B1, B2, B8, B3

PRINCIPALI SEDI DI ASSORBIMENTO

	Tenue prossimale (duodeno e digiuno)	Tenue distale (ileo)	Colon
Vitamine liposolubili	A, D, E, K1		K2
Vitamine idrosolubili	B1, B2, PP, B5, B6, B8, B9	C, B12	

PRINCIPALI MECCANISMI DI ASSORBIMENTO

	Trasporto attivo	Diffusione facilitata	Diffusione passiva
Vitamine liposolubili	A, K		D, E
Vitamine idrosolubili	B1, B2, B5, B9, B12, C	PP	B6, B8

PRINCIPALE FORMA DI CIRCOLAZIONE

	Libere nel plasma	Legate a proteina specifica	Legate a proteina aspecifica	Legate a lipoproteine	All'interno dei globuli rossi
Vitamine liposolubili		A, D		E, K	
Vitamine idrosolubili	C	B8, B12	В9		B1, B2, PP, B5, B6

PROVITAMINE

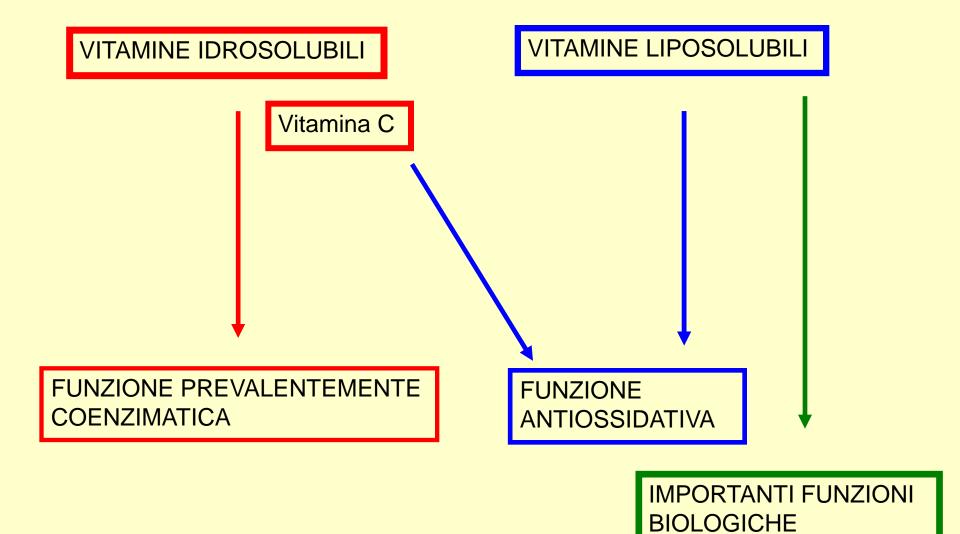
Le vitamine possono derivare da provitamine: composti che vengono trasformati nella forma attiva dall'organismo

CONTENUTO REALE DI VITAMINE NEGLI ALIMENTI

- Il contenuto teorico in vitamine di un alimento può discostarsi dalla quantità realmente contenuta negli alimenti al momento del consumo
- Molte vitamine sono termolabili per cui il loro contenuto nell'alimento diminuisce notevolmente durante la cottura

Le vitamine idrosolubili generalmente non si accumulano nell'organismo (si eliminano attraverso le urine e la sudorazione) e quindi difficilmente raggiungono concentrazioni eccessive

Le vitamine liposolubili si depositano nei diversi tessuti i ipervitaminosi

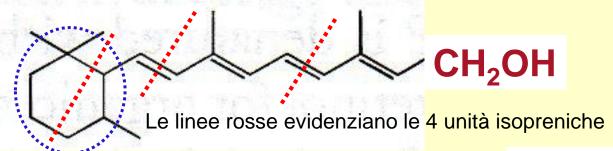

IPERVITAMINOSI

Non sussistono con la normale alimentazione

Maggiore rischio utilizzando integratori

L'uso degli integratori va limitato a particolari periodi della vita in cui si ritiene che l'alimentazione non sia sufficiente a coprire il fabbisogno

FUNZIONI DELLE VITAMINE



VITAMINA A (retinolo)

La vitamina A è un composto isoprenoide contenente un anello a sei atomi di carbonio e una catena laterale composta da undici atomi di carbonio.

L'attività della vitamina non è dovuta solo al retinolo, ma anche ad alcuni Carotenoidi largamenti diffusi nelle piante, α,β e γ carotenoidi. I caroteni non possiedono di per se' alcuna attività vitaminica, ma vengono convertiti in vitamina A mediante reazioni enzimatiche che hanno luogo a livello della mucosa intestinale e nel fegato. Il β carotene viene scisso a metà per formare due molecole di retinolo

Vitamina A

tutto-trans retinolo (forma alcolica) Vitamina A

anello β-iononico essenziale per l'attività; è presente nei carotenoidi con attività provitaminica

Il gruppo alcolico è esterificato da acidi grassi (in genere acido palmitico) nella forma di riserva della vitamina

retinolo deidrogenasi + NAD (reazione reversibile di ossidazione ad aldeide)

retinale

(forma aldeidica) Ruolo nella visione

retinale deidrogenasi + NAD (reazione <u>irreversibile</u> di ossidazione ad acido)

acido retinoico

Ligando di fattori di trascrizione

VISIONE

Il retinolo, il retinale e i carotenoidi, sono dei fattori indispensabili per la vista, in quanto componenti della *rodopsina*, la sostanza sensibile alla luce presente sulla retina oculare

MORFOGENESI

L'acido retinoico è coinvolto nell'espressione dei geni che determinano lo sviluppo di un organismo (in modo speciale i tessuti epiteliali)

RISPOSTA IMMUNE

La carenza determina un calo delle difese immunitarie per una diminuzione dell'attività dei linfociti T-helper e della secrezione di IgA

FONTI ALIMENTARI

Alimenti di origine animale

Fegato, burro, tuorlo d'uovo, latte e formaggi

Alimenti di origine vegetali

Carote, broccoli, spinaci, finocchi, zucca, albicocche, meloni, pomodori, ortaggi a foglia

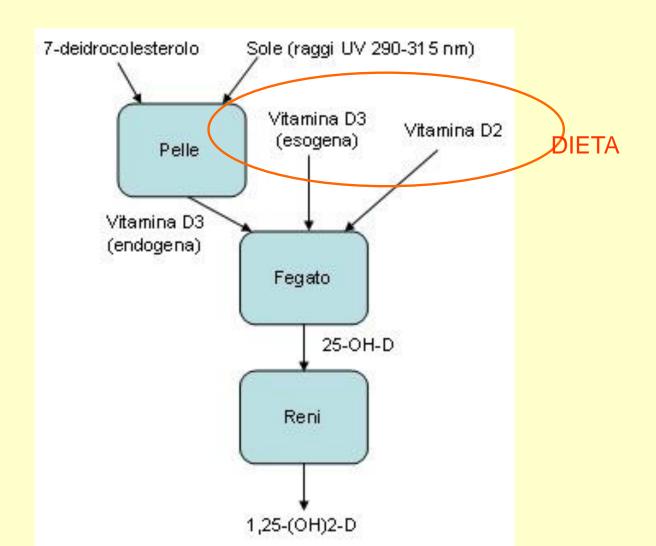
•La Vitamina A ed i caroteni sono stabili nel corso di trattamenti termici moderati, ma vengono distrutti a temperature elevate ed in presenza di ossigeno. La Vitamina A è facilmente ossidabile dai perossidi degli acidi grassi. Gli antiossidanti (in particolare i tocoferoli vit. E) proteggono in parte la Vitamina A dall'ossidazione.

CARENZA

- sintomi visivi: diminuzione della visione notturna, secchezza della congiuntiva e della cornea (XEROFTALMIA) danni permanenti all'occhio e cecità
- sintomi cutanei: secchezza e poi degenerazione con cheratinizzazione degli epiteli dei tratti respiratori, gastrointestinali, ecc.
- sintomi generali: maggiore esposizione alle infezioni virali e alle complicanze polmonari

VITAMINA D

PRECURSORE dell'ormone steroideo 1,25-diidrossi colecalciferolo



FUNZIONI dell'ormone: agisce a livello trascrizionale

- omeostasi del calcio, in particolare assorbimento
 <u>a livello intestinale</u>: geni codificanti per il trasportatore del calcio e
 per la "proteina legante il calcio"
- mineralizzazione ossea
- secrezione dell'insulina
- crescita, differenziamento
- sistema immunitario

FONTI

- sintesi endogena: esposizione alla luce solare
- dieta (necessita di lipidi e sali biliari per l'assorbimento)

OMEOSTASI DEL CALCIO

coordinazione tra:

assorbimento del calcio nell'intestino deposizione del calcio nelle ossa

escrezione del calcio attraverso i reni

[calcio] nel siero

sintesi di 1,25 diidrossi- D₃ (1,25-diidrossi colecalciferolo

Ormone paratiroideo (PTH)

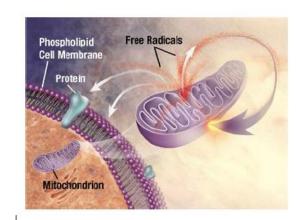
Poiché l'uomo è in grado di produrre la vitamina D3 a partire dal 7-deidrocolesterolo attraverso l'azione della luce del sole sulla pelle

la vitamina D non è affatto una vitamina. Il suo meccanismo d'azione la rende un proormone.

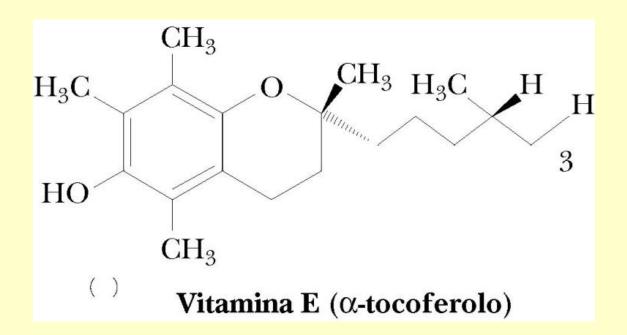
FONTI ALIMENTARI

- Pochi alimenti tutti di origine animale contengono quantità significative di vitamina D
- L'olio di fegato di merluzzo ne è ricchissimo (210µg/100 g)
- I pesci grassi (salmone, aringa) ne possono contenere fino a $25\mu g/100g$
- Tra le carni solo il fegato ne contiene circa 0.5μg/100g
- Il burro ne contiene $0.75\mu g/100g$ e i formaggi grassi fino a $0.5\mu g/100g$
- Le uova ne contengono 1.75μg/100g

CARENZA di VIT.D


RACHITISMO:

- Perdita della mineralizzazione dell'osso
- Inibizione della maturazione della cartilagine e suo sfaldamento che porta ad un anomalo accrescimento delle cartilagini epifisiarie
- Masse cartilaginee nel midollo
- Allargamento delle giunzioni osteocondrali per mancato rimpiazzo della cartilagine dal tessuto osseo


VITAMINA E

La **vitamina E** (sotto forma dei suoi isomeri α- e β-tocoferolo) protegge gli acidi grassi polinsaturi e le lipoproteine a bassa densità (LDL) dalla perossidazione indotta da radicali liberi.

- Nel nostro corpo si trova immagazzinata nel tessuto adiposo, nel fegato e nei muscoli ed esplica la sua azione a livello delle membrane biologiche.
- Fonte naturale di questa vitamina sono oli vegetali ottenuti da semi: soia, arachide, mais, girasole, ecc.

Vitamina E

 $L'\alpha$ -tocoferolo è un potente antiossidante

Funzione: protezione degli acidi grassi insaturi delle membrane dall'ossidazione

 $[\alpha$ -tocoferolo]_{plasma} = globuli rossi maggiormente sensibili ai danni ossidativi

FONTI: soprattutto **in alimenti di origine vegetale,** olio di oliva, noci, mandorle, vegetali verdi

LOCALIZZAZIONE: zone ricche in lipidi quali membrane cellulari, lipoproteine, depositi di grasso

FUNZIONE

- protezione da auto-ossidazione degli acidi grassi polinsaturi.
- previene ossidazione lipoproteine (LDL)

MECCANISMO: antiossidante che interrompe la catena di radicali che reagiscono più velocemente con la vi tE che con acidi grassi

Vi E-O• reagisce con vitamina C o altro donatore di di idrogeno e ridiventa Vit E-OH

FONTI ALIMENTARI

· Oli, frutti oleosi, germi di cereali

• le verdure ne contengono piccole quantità

 presente anche nelle frazioni lipidiche di alcuni prodotti di origine animale: fegato, uova, materia grassa del latte

CARENZA

MALATTIA ASSOCIATA: ANEMIA EMOLITICA

■ La carenza di vitamina E non si riscontra in individui normali, ma in seguito a malassorbimento

 Si manifesta con segni ematologici, neurologici, muscolari progressivi

VITAMINA K

Vitamina K1 (fillochinone): si trova nei vegetali verdi, va direttamente nel fegato ed aiuta a mantenere un corretto controllo della coagulazione sanguigna (è la vitamina che spesso viene data ai neonati alla nascita per aiutare a prevenire problemi emorragici, ma questa pratica è sotto osservazione per il forte sospetto che possa provocare in seguito problemi cognitivi nei bambini

$$\bigcup_{n-1}^{O} \bigcup_{n-1}^{H}$$

Vitamina K2 (menachinone, MK): è prodotta dai batteri. E' presente in alte quantità nell'intestino ma sfortunatamente non è assorbita e passa nelle feci.

FUNZIONI VIT K

- Cofattore dell'enzima che catalizza la carbossilazione dell'acido glutammico presente in alcune proteine trasformandolo in acido γcarbossiglutammico
- Tra le proteine che subiscono questa reazione, le principali sono coinvolte nel processo di coagulazione del sangue (protrombina, fattore VII, fattore IX, fattore X)

CARENZA

 Sindrome emorragica a causa dell'inadeguata sintesi dei fattori della coagulazione del sangue

La vitamina K interviene come fattore antiemorragico nella coagulazione del sangue.

FUNZIONE BIOCHIMICA

cofattore di carbossilasi per la sintesi dell'acido γ-carbossiglutammico (Gla) a partire dall'acido glutammico di proteine

La coagulazione implica una attivazione a cascata di enzimi proteolitici già presenti nel plasma come precursori inattivi: la specifica proteolisi rende attivo il fattore (reazione finale: fibrinogeno → fibrina)

In tale processo le proteine che hanno Gla legano il Ca²⁺ che si lega anche ai fosfolipidi negativi della membrana delle piastrine.

Protrombina

Fattore VII

Fattore IX

Fattore X

In assenza di Ca²⁺ non si legano alle piastrine attive e non vengono trasformati nella forma attiva dall'enzima proteolitico di cui sono substrato

VITAMINE DEL GRUPPO B

Svolgono un'azione importante nel metabolismo di carboidrati, acidi grassi e proteine.

 $B_1 \rightarrow TIAMINA$

COENZIMI

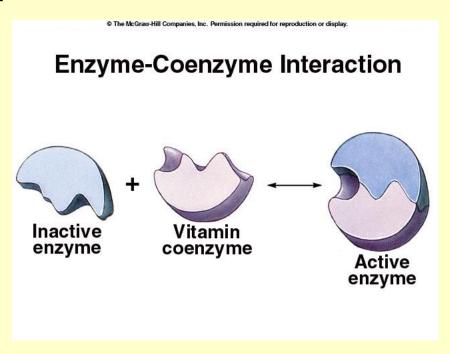
B₂ RIBOFLAVINA

B₅ → ACIDO PANTOTENICO

Come anche la vitamina PP o NIACINA

B₆ → PIRIDOSSINA

B₈ → BIOTINA

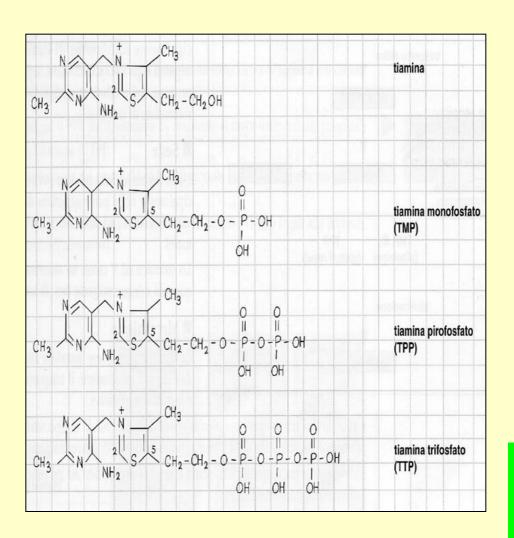

B₉ → ACIDO FOLICO B₁₂ → COBALAMINA

VITAMINE IDROSOLUBILI

- Facilmente assorbite ed escrete, non sono conservate nei tessuti
- Dovrebbero essere introdotte in quantità adeguate ogni giorno poichè sono costantemente usate o eliminate attraverso urine e sudore
- Idrosolubili e prontamente assorbite dalla dieta non richiedono proteine di trasporto nel plasma come le liposolubili

VITAMINE DEL GRUPPO B

- Agiscono come coenzimi piccole molecole che si combinano con un enzima per renderlo attivo
- Sono importanti nel metabolismo dei carboidrati, lipidi e amminoacidi



VITAMINE DEL GRUPPO B

 Tiamina, riboflavina, niacina, acido pantotenico, biotina e piridossina participano a varie reazioni biochimiche

• Folati e vitamina B12 importanti per la divisione e moltiplicazione cellulare

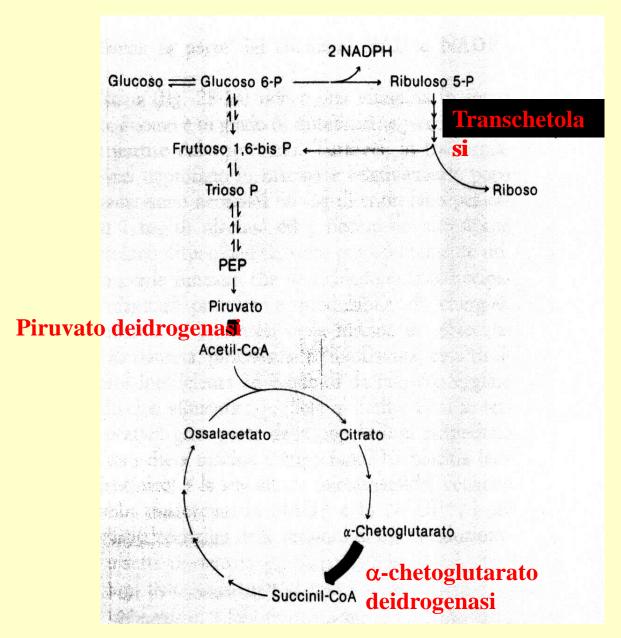
TIAMINA (B1)

- Stabile in soluzione acida
- Sensibile al calore, alle basi e alla luce UV

FORMA ATTIVA:

• TPP, fosforilata dal fegato

TIAMINA (B1)


• Importante ruolo nel metabolismo energetico

Sintesi di ATP

Co-fattore nella via del pentoso fosfato (transchetolasi)

Essenziale nella neurotrasmissione e nella conduzione nervosa

REAZIONI CUI PARTECIPA COME COENZIMA LA TPP

FONTI ALIMENTARI

• Ampiamente distribuita nei cibi

Risorse significative

- maiale, prosciutto, verdure a foglie verdi, grano, cereali, lievito, legumi, etc.

Vitamina B ₁ (Tiamina)

E' la vitamina dell'umore, del morale, della capacità intellettiva, dell'energia.

La vitamina è di supporto all'enzima responsabile dell'ossidazione dei carboidrati.Il tessuto nervoso è il primo a risentire della carenza di questa vitamina. E' conosciuta come la vitamina che combatte il Beriberi, una polineurite.

Chi mangia cereali raffinati, può andare incontro a carenza di B1. La B1 risiede nel germe e nella corteccia dei cereali; la cottura e le lavorazioni industriali la distruggono. E' utile in gravidanza e nell'allattamento; infatti, la depressione postpartum finisce in pochi giorni con 1 grammo di B₁ giornaliero.

La depressione degli anziani che oggi sembra diventata una condizione generalizzata (forse per un ridotto assorbimento di B₁) per essere risolta necessita di 250 mg al giorno.

Vitamina B 1 (Tiamina)

Altro campo d'azione della B_1 è l'alcolismo; infatti l'incidenza dei decessi fra gli alcolisti è comparabile a quella provocata dal beri-beri, si riduce del 100% integrando la dieta con 200 mg di B_1 due volte al giorno.

Molte persone, pur non essendo alcolisti, non rinunciano all'alcol, anche fra i giovani, quindi, un po' (50mg/die) di B_1 può essere certamente di aiuto.

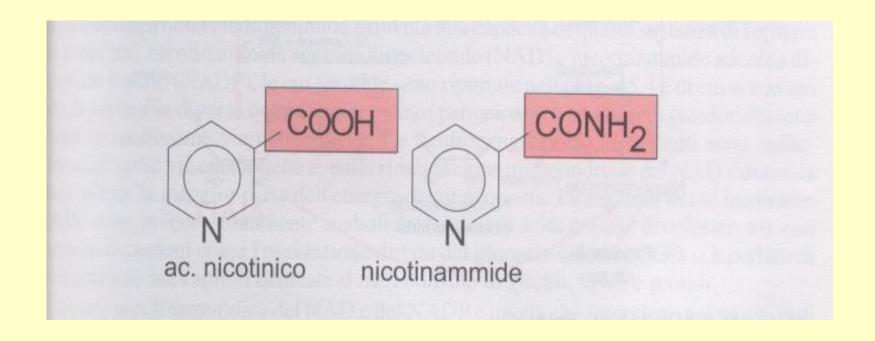
Poiché è idrosolubile, non esiste il rischio di un sovradosaggio.

Vitamina B ₁ (Tiamina)

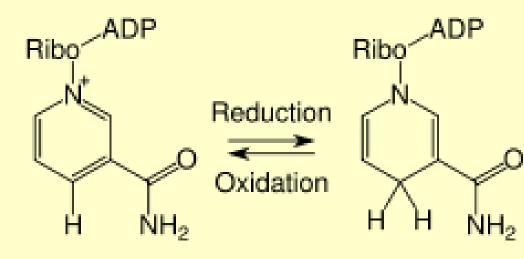
Molto spesso, certi caratteri "pestiferi" dei bambini derivano da un'alimentazione costituita essenzialmente da latte in polvere e cereali raffinati: miracolosamente la B_1 risolve anche questo tipo di "problema" (10mg/die).

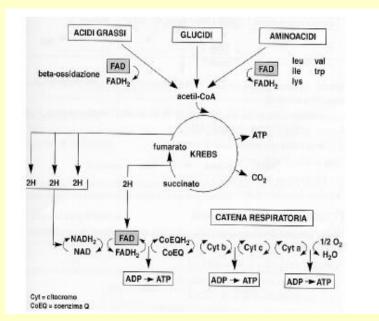
E' altresì importante per avere un cuore normale; infatti, quando il cuore è ingrossato e vi è un rallentamento dei battiti, l'assunzione di B_1 migliora la condizione (100 mg/die).

Apporti che dovrebbero essere aumentati in soggetti che hanno una dieta ricca in carboidrati.


RIBOFLAVINA (B2)

- Stabile al calore
- Sensibile alla luce (circa 85% distrutto nel latte esposto alla luce) e alle basi.


RIBOFLAVINA (B2)


- Importante ruolo nel metabolismo energetico
- Componente della flavin mononucleotide (FMN) e flavin adenin dinucleotide (FAD) che participano alle reazioni di ossidoriduzione

NIACINA (B3 O PP)

E' la più stabile del gruppo B Perdite sono dovute alla sua solubilità

RECENTI STUDI

La NIACINA (B3) può proteggere contro l'instaurarsi dell'Alzheimer

Lo studio ha coinvolto quasi 4.000 persone, di età superiore ai 65 anni, senza malattia di Alzheimer.

È risultato che, la niacina, può proteggere contro lo sviluppo della malattia di Alzheimer ed il declino cognitivo associato all'età.

La Niacina è presente soprattutto nella carne magra, nel pesce, nei legumi, nelle noci.

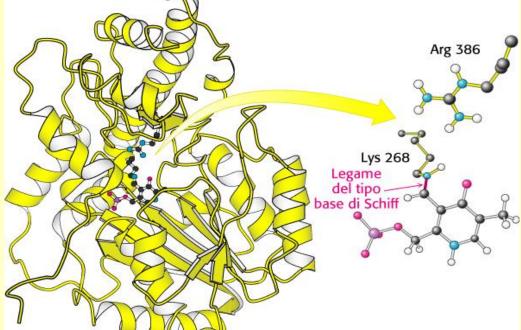
ACIDO PANTOTENICO (VIT B5)

• E' parte del Coenzima A e della proteina trasportatrice di acili

• Coinvolta nella biosintesi e nella degradazione degli acidi grassi e del colesterolo

FONTI ALIMENTARI

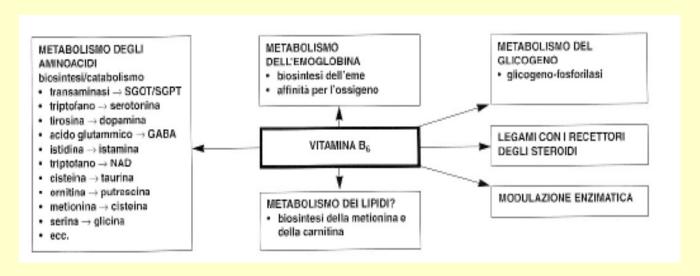
- Largamente distribuito negli alimenti vegetali ed animali (fegato, lievito, tuorlo d'uovo, legumi)
- Notevoli quantità nella pappa reale e nelle ovaie di tonno e merluzzo


CARENZA

- Gli stati di carenza sono rari ed in rapporto con gravi stati di denutrizione
- Sintomi di carenza: astenia, nausea, vomito, dolori addominali

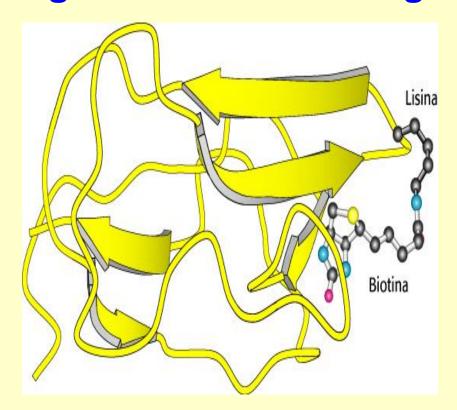
La piridossina o Vitamina B₆

La vitamina B₆ entra nella composizione di un derivato metabolico importante: il piridossalfosfato, indispensabile nelle reazioni di transaminazione nel metabolismo di proteine e aminoacidi. Il suo fabbisogno viene calcolato in proporzione al contenuto proteico nella dieta. Per l'adulto vengono raccomandate quantità di 1,5 mg al giorno, con un aumento del 20 % in gravidanza e del 30 % durante l'allattamento o in atleti che aumentano l'apporto proteico


giornaliero.

METABOLISMO E RUOLO METABOLICO

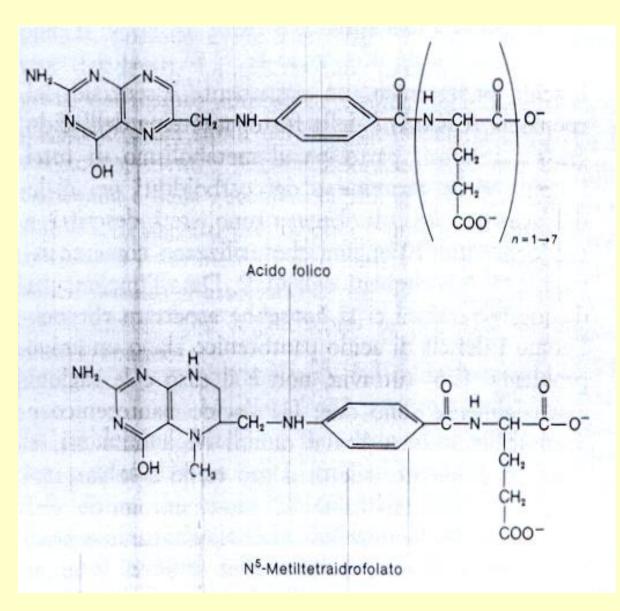
RUOLO METABOLICO


- molte reazioni del metabolismo degli AA (cofattore di transaminasi, decarbossilasi, transferasi)
- sintesi dell'FMF
- metabolismo del glicogeno

Largamente diffusa negli alimenti di origine animale

La Biotina o Vitamina B₈ è una molecola contenente zolfo ed è termostabile

La vitamina è parte essenziale di enzimi, quali le carbossilasi coinvolte nel metabolismo dei carboidrati, degli aminoacidi e dei grassi.


La Biotina o Vitamina B₈

La BIOTINA in dosi di 9 mg/die mostra un significativo abbassamento del glucosio nel sangue e un migliore controllo dello stesso in diabetici non insulino dipendenti.

M.Maebashi et al Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diadetes mellitus J.Clin. Biochem. Nutr. 1993

La carenza di biotina è molto rara. I pochi casi segnalati erano dovuti a nutrizione artificiale o ad ingestione di grosse quantità di uova crude o alla coque; l'albume dell'uovo contiene l'avidina proteina capace di legare la biotina e di impedire il suo assorbimento.

ACIDO FOLICO / FOLATI (VIT B9)

- Stabile al calore
- Sensibile alla luce UV e agli agenti ox e red

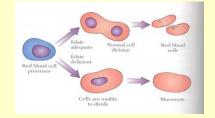
RUOLO METABOLICO

RUOLO METABOLICO:

- trasportatore di unità monocarboniose (-CHO, -CH₃, -CH₂...)
- metabolismo AA
- sintesi delle proteine
- sintesi delle basi puriniche e pirimidiniche
- metabolismo della metionina

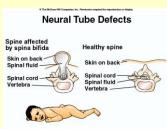
Importante per la divisione e moltiplicazione cellulare

FONTI ALIMENTARI

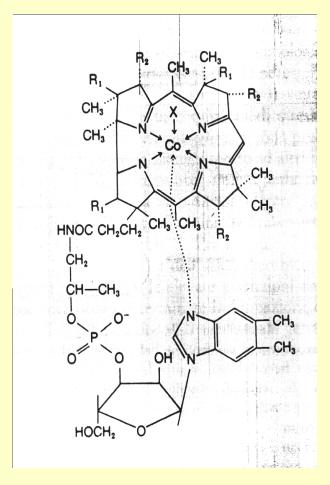

Presente in una varietà di cibi: carni, vegetali (verdure a foglie verdi, frutta)

Facilmente "degradato" durante la cottura

CARENZA


Riduzione della sintesi di DNA e RNA con conseguente

anemia megaloblastica



In gravidanza la carenza di folati costituisce un fattore di

rischio (spina bifida)

VITAMINA B12

Sensibile alla luce, O2 e agenti riducenti

• Indirettamente necessaria per la divisione cellulare

METABOLISMO E RUOLO METABOLICO

DEPOSITO: nel fegato (fino a 2-5 anni)

TRASPORTO NEL SANGUE:

• principalmente B12 legata alle transcobalamine (TCI)

ESCREZIONE:

• attraverso la bile con un importante ricircolo enteroepatico

FORMA ATTIVA:

- metilcobalamina convertita nel citoplasma
- adenosilcobalamina convertita nei mitocondri

RUOLO METABOLICO:

- reazioni di transmetilazione (metilazione dell'omocisteina a metionina)
- reazioni di isomerizzazione (metabolismo del propionato)

FONTI ALIMENTARI

• Può essere sintetizzata in natura solo da batteri, funghi e alghe

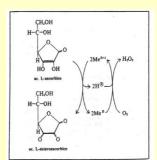
• E' presente, anche se in piccole quantità, in tutti gli alimenti di origine animale. Il fegato ne è particolarmente ricco

CARENZA

MALATTIA ASSOCIATA: ANEMIA

- Arresto della maturazione dei RBC e nei casi più gravi anche demielinizzazione delle fibre nervose del midollo spinale.
- Quadro ematico: simile a quello della carenza di B9 e la somministrazione di questa vitamina può mascherare la carenza di B12.

- Associata a degenerazione nervosa
- Differentemente da altre vitamine idrosolubili può essere immagazzinata nel corpo per anni. La carenza può svilupparsi anche dopo 20-30 anni


VITAMINA C

La vitamina C è idrosolubile, termosensibile, sensibile agli UV ed all'ossigeno.

L'uomo, non è capace di sintetizzare la vitamina C perché manca dell'enzima GLUCONOLATTONE OSSIDASI.

Le migliori fonti alimentari di vitamina C sono gli asparagi, i kiwi, la papaya, le arance, i limoni, i broccoli, i peperoni e le fragole.

Le supplementazioni che si trovano in commercio presentano la vitamina in forma libera, come ascorbato di calcio, di sodio o ascorbilpalmitato.

Piccole quantità di vitamina C sono assorbite dalla mucosa della bocca e dallo stomaco.

Sostanze che interferiscono con l'assimilazione di vitamina C sono la pectina e lo zinco.

Le pectine sono una classe di polisaccaridi vegetali. Hanno la proprietà di gelatinizzare: sono usate nella preparazione di marmellate e gelatine di frutta.

Funzione e meccanismo d'azione

L'acido ascorbico è necessario per il mantenimento del collagene. La lisina e la prolina vengono idrossilate da enzimi specifici, che richiedono ascorbato per funzionare e i due aminoacidi, senza questa idrossilazione, sono incapaci di incrociarsi per formare le fibrille di collagene. Quest'ultimo è indispensabile per il mantenimento del tessuto connettivo normale, per la normale formazione delle ossa, per la prevenzione della fragilità capillare e per la cicatrizzazione di ferite o ustioni.

Non tutti sanno che la vitamina C è necessaria per la sintesi della carnitina, indispensabile per il trasporto degli acidi grassi a lunga catena dal citosol ai mitocondri, dove i grassi vengono β -ossidati per produrre energia; che partecipa alla sintesi e al catabolismo della tirosina, substrato indispensabile per la formazione della dopamina e che partecipa alla sintesi di adrenalina e serotonina.

La vitamina C potenzia l'azione dell'acido folico e protegge le vitamine A ed E dall'ossidazione.

Pauling diffuse la vitamina C integrativa, sostenendo che l'uso di mega dosi (1-2 g/die) era utile per la prevenzione e la cura del raffreddore.

NUTRIRSI NON È SOLO "MANGIARE"

La nutrizione è l'insieme dei processi biologici che consentono o condizionano la conservazione, l'accrescimento, lo sviluppo dell'organismo vivente e la reintegrazione delle perdite materiali ed energetiche che accompagnano le diverse attività funzionali.

Gli **alimenti** sono quelle sostanze che, introdotte nell' organismo, vengono assimilate, metabolizzate, trasformate e ridistribuite, e sono necessarie al mantenimento delle funzioni del corpo, alla crescita e al rinnovamento delle parti che lo compongono.

- 1 Funzione energetica:
- 2 Funzione plastica:

3 Funzione protettiva: potenziano il sistema immunitario

4 Funzione regolatrice: nelle reazioni chimiche

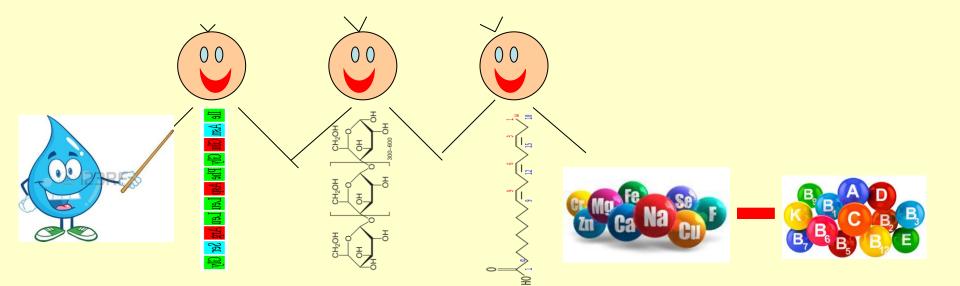
5 Funzione di riserva:

QUESTI PROCESSI COINVOLGONO

TUTTI I LIVELLI DI ORGANIZZAZIONE DELL'ORGANISMO UMANO

MANGIARE TANTO

MANGIARE TROPPO POCO



MANGIARE IN MANIERA EQUILIBRATA

GRAZIE PER L'ATENZIONE

